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Abstract.

This paper describes the methodology used to build a high-resolution, multi-
material hydrocode that is formulated to be third order in time and fourth order in
space. The hydrocode is suitable for simulating high-speed impact and interaction
of energetic and inert materials. Energetic materials are modeled by the reactive
Euler equations. The inert materials can be modeled by either the Euler equations
or by constitutive laws that can describe metals. Level set functions are used to
track the motion of multi-material interfaces between fluids, solids and free surfaces
(or voids). A technique is used to extrapolate material states into extended ghost
node regions to enforce boundary conditions. A standard pressure update is used
near the material/material interfaces. The algorithms are verified with a collection
of standard test problems, and the function of the code is demonstrated with a series
of representative applications that include: copper rod impact, explosive rate-stick,
explosive welding, and the impact of a copper plate by a cylindrical detonation.
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1. Introduction

High-speed impact of materials generates strong shock waves, large rates of
deformations and generates hydrodynamic pressures that are often much greater
than the deviatoric stresses. Then, variants of the standard Euler equations for
compressible flow can be used to model materials with deviatoric strength. The
dominant physical mechanisms satisfy the Euler equations to a first approximation,
and the effects associated with deviatoric strength are in some sense a small correction.
We describe the numerical methodology that we used to construct a high resolution
(in both space and time) code that can be used to simulate multi-material interactions
at high strain rates and detonation in explosives. Our purpose is to offer enough detail
so that interested readers can reproduce this capability with a minimum of effort and
use the resulting code to good effect. One of our target applications for this code is
explosively driven material processing.

In the past, hydrodynamic codes have been developed to model multi-
dimensional, multi-material interactions with high-rate of deformations in the
presence of strong shock waves [1, 2, 3]. In particular, CTH is a 3-D hydrocode
developed at Sandia National Laboratories [1, 4], and it has been successfully applied
to a large variety of strong shock problems, which include hypervelocity impact
and effects of detonating high explosives. Both analytic and tabular equations of
state (EOS) for solid, liquid, vapor, gas-liquid mixed phase and solid-liquid mixed
phase have been implemented [4]. Similar hydrocodes, MESA (a precursor) [3] and
PAGOSA [2], both developed at Los Alamos National Laboratory, are based on
finite difference approximations on an Eulerian mesh. Such codes are representative
of a certain class of hydrocodes. These codes typically solve the conservation of

mass, momentum, and energy equations across the ‘fixed’ interface in two steps: A
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Lagrangian step where the cell distorts and follows the material motion, followed by
a rezone step where the distorted cells are mapped back to the Eulerian mesh.

Typically these hydrocodes are first order in time and second order in space. Our
high-resolution approach uses fourth-order convex ENO for the spatial discretization
and third-order TVD Runge-Kutta for time advancement. Our treatment of
material interfaces uses level sets and is fairly simple and robust. Enforcement
of jump conditions across the material interface is achieved by applying a ghost-
node-populating technique to interpolate data into extended regions. The time
advancement is based on the method of lines, and it enables multi-dimensional
calculations without time splitting and allows efficient implementation of Runge-
Kutta schemes at orders higher than two.

The physical models we use include an ideal equation of state (EOS) for an inert
compressible gas, an ideal EOS reactive flow model for a high-explosive (HE) that
uses the reaction rate law found in [5], a Mie-Gruneisen EOS for inert solid, Blatz—Ko
elasticity model for an elastic, rubbery solid, [6], an elasto—plastic model for metal
with isotropic linear hardening and Johnson—Cook hardening laws.

We carry out validation exercises in one and two dimensions to test our models
and the high-resolution numerics with level set interface tracking. First, we consider
standard shock tube tests with two different gases, and we demonstrate the spatial
rate of convergence of the high-order scheme. To test the reactive Euler flow solver,
we reproduce the one-dimensional ZND detonation wave structure for the ABS model
described in Ref. [5]. The third numerical validation is a benchmark simulation of
Taylor copper-rod impact test, and we compare against a similar simulation that
used an adaptive finite-element method described in [7]. A fourth exercise computes
detonation propagating in an explosive rate-stick experiment. The rate-stick is a

cylindrical tube or finite-width slab of explosive confined by inert material. The stick
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is initiated at one end by a high pressure/temperature region, and a curved detonation
wave emerges and eventually propagates steadily down the axis of the stick. The
steady detonation speed and the angle of inert shock transmitted to the adjacent
material at the interface are compared against a similar benchmark computation by
Aslam [8] that was carried out with an advanced adaptive mesh refinement code.
Following these validations, we demonstrate capabilities of our multi-dimensional
hydrocode by applying it to problems that reflect our current research interests in
explosively driven materials processing. First, we simulate a rate-stick experiment
involving HE, copper, and void layers, and we observe how the copper layer is
deformed. Then, we simulate explosive welding of copper and high-strength steel
plates that are initially unbound. Upon detonating an explosive in outer layer, the two
metals come in contact in both shear and impact motions that cause an instability at
the material interface. A final application of the model is the two-dimensional metal-
plate-impact experiment. A plate of thickness 5 mm is shocked by a spherically
propagating detonation wave. Intermediate and final deformations of the metal plate
are of interest while the plastic strain distribution upon contact with the detonation

wave serves to characterize the damage to the plate.

2. A high-order hyperbolic solver

The general conservation laws of multi-dimensional, multi-material physics can be
written as

oU OF 0G

W+a—x+a—y_S(U) (1)

where the variables represent a vector of conserved variables U, spatial fluxes in z

and y-directions F' and G, and a source, S.
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The discretized system of PDEs in (1) can be solved by independent steps of
space and time integration. For our two-dimensional system, the x and y fluxes are
treated with the fourth-order convex ENO scheme, [9]. Once the two advection terms
are approximated by spatial differences, equation (1) is approximated by a system of
ODEs (rather than PDEs) that are solved in time with a third-order TVD Runge-
Kutta scheme that is guaranteed to be total-variation diminishing in the sense of

[10].
2.1. Discretizations in time

The third-order TVD Runge-Kutta algorithm for time advance in this work is given
by

U, =Uo+ Al[L(Uo) + S(Uo)],
Uz = Up + {MLU:) + SU)] + ;ALTY) + ST,
Us = Uy + cAL(U) + SWUo)
+LAHLU) + SU))] + SALD) + S(U)], )
where L and S now represent discretized spatial derivatives in z (and y if 2-

D) direction, and the source terms of (1), respectively. The high-order spatial

approximation to the derivative fluxes represented by L will be discussed next.
2.2. General ENO scheme for spatial discretization

The conservative form of a one-dimensional hyperbolic PDE is given by

ou n O0f (u)

ot o0x

= 0. (3)
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The time derivative is maintained but the spatial derivative is replaced by spatial

discretization. The resulting ODE is a semi-discretized equation,

du

1 - A
Lt i Uies— frop) =0 (@

wIH

L
The numerical fluxes are the ingredient that determine the spatial order of accuracy,
and different versions of ENO (or earlier versions of TVD) schemes give recipes for
the construction of fluxes [10, 9]. Next, we describe the recipe that leads to the
high-order convex ENO approximation.

The fluxes in (4) are generated from the combination of the upwind and
downwind portions represented by

Py ) = S +aggw), fry () = S(F() — ayy ). (5)

We note variation in the definition of « controls the amount of viscosity or diffusion
of a scheme and results in different versions of these fluxes. In this work, the local

Lax-Friedrichs fluxes are employed by specifying

df

min(u; 25 41) <u<max(uj,uj41)

where o, 1 is the largest eigenvalue of the flux Jacobian, df /du, evaluated on the

Jjt+5

local computational domain of (u;,u;41). The first-order local Lax—Friedrichs flux is

defined as follows:

fj—}- f]+ (us) + f (“H—l) (7)

1=
2

The second-order flux is written as
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~

i+l = %[f(uj—i-l) + f(uy) — o (wjon — uy)] (8)

+%[E(T}L)(A+f(uj) oy Aguy) = Uri ) (Ag fuje) — o 18 uj40)]

=

_I,_ — .
where Ajuy, 7}, and ;. are given by

Ayu; = £ (ujer — uy), 9)
(A_f(uj) +oyp1du;) (Ao f(ujm) — a1 A uj)
, T = .

Ay flug) +ajdyug) 70 (A flujn) — a1 Aguji)

For ¢, we chose the minmod limiter, given by

+ _
T =

(10)

¢(r) = max (0, min(r, 1)). (11)

2.2.1.  High-order convex ENO scheme The first and second-order convex ENO
fluxes are the local LaxFriedrichs fluxes that use the minmod limiter as defined
in the previous section. Next, we build the high-order convex ENO fluxes. To do
this we define a function H(x), whose derivative with respect to z, represents a
non-oscillatory approximation to the flux f (z) at each grid points. In other words,
(H (”)+(:L'j))' = f;i); (u;) for the upwind component of the n-th order convex ENO
flux. A detailed example of the ENO construction is discussed in the Appendix.
The upwinding interpolant involving the points (z;_i,z;) and the first-order

polynomial interpolant to the upwind flux is

HO* (2) = Hlz; 1,0 + Hlag, 1](@ - a;1), (12)

where the square bracket denotes the divided difference coefficient of the Newton

interpolating polynomial [11]. The second argument in the square bracket denotes
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the order of these coefficients. A table of these coefficients for each points in the
computing grids can be constructed in a straight forward manner, and below we list

through the third-order coefficients,

Hlz;,0) = H(z;), H[z;,1] = H[z;,0] — Hz;_,, o],

Ax
Hlz;,1] — H[zj_1,1]
Hla;,2) = ==,
Hiz; 2| — H|x;_1,2
H[$j,3]: [J ]3Ax[] 1 ] (13)

Differentiating (12) with respect to « and evaluating it at z; give the first-order

approximation of H(M+ derivative

(HO* () = Hlz;,1], (14)

where the ( )’ denotes differentiation with respect to z. Next, second-order
interpolants are of two kinds involving the points (z;_2, ;_1, ;) and (x;_1, ;, Tj1+1)-

In other words, we define
H®*(2) = Hlz;j_2,0] + H[z;_1,1]( — z;_0) + H[z;,2](zx — zj_0)(z — x;_1)
HPY () = Hlwjy, 0] + Hlzj, 1(z — 2j-1) + Hlzji,2)(z — 250) (2 — ;). (15)

As in the first-order case, we evaluate the derivative of the second-order interpolants

at z; and find,

(H* () = Hlaj, 1) + Hlzy, 2(300)
(H* (@) = Hlaj 1) + Hlag, 2)(Ac). (16)

! !
We take the convex combination of (H1(2)+(acj)) and (H2(2)+(xj)> , which is

“closest” to the lower order approximation, (H (1)+(:rj))'. So the second-order
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interpolant based on this decision process is found as (H (2)+(xj))l, or it is identical

to the upwind (+) portion of the full local Lax—Friedrichs flux in (8),
1 1
PO ) = () + 1y yug) + () (B F ) + 3 D). (17)

At third order, there are three interpolants involving points from

(%j-3, Tj—2, Tj-1, %), (Tjm2, Tj=1, Tj, Tj11), 10 (Tj—1, Tj, Tjs1, Tjt2). They are

HP" (@) = Hlz;s,0] + Hlz;j 2, 1)(z — 7j-3) + H[z;1,2](z — 7;_5)(z — 2;-5)
+Hlzj,3](z — zj-3)(z — zj-2)(x — z-1), (18)
HY* (2) = Hlwjos,0] + Hlzj-1,1)(z — 2j_2) + Hlz;,2)(2 — 7j_2)(z — z;_1)
TH(zj1,3](z — zj-0)(x — zj1)(x — x;), (19)
H (2) = Hlw; 1, 0]+ Hlwj, 1)(z — x51) + Hlwjp1,2)(x — 250) (x — 25)

+H([zjy2,3](x — 25 1) (2 — 25)(T — 2j41), (20)

whose derivatives evaluated at x; become

(H®* (@) = Hiays,1) + Hlay1,2)(550) + Hizz, 3)(11(20)?), (21)
(H2(3)+($j))l = Hlzj1,1] + H[z;,2](3Az) + Hlzj11,3](2(Az)?), (22)
(H§3)+(fvj))l = Hlz;, 1] + H[zj11, 2](Az) + H[z;19, 3](—(Az)?). (23)

The convex-weighted differences are tabulated for third order (n = 3) involving three
possible interpolants labeled » = 1...3 as follows:
! !
dr =i (B (7)) = (HOH (7)), do = eo((BPF(25)) = (HO* (7)),
!
ds = cs((H" (2)) = (HO* (7)),

If all are of the same sign, we find the smallest of these difference and denote it

(24)

d,,() with
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!

(HO* (@) = (HY () - (25)

Otherwise, the lower ordered interpolant is chosen so that

(H® (25)) = (H®* (7). (26)

Values of ¢, are ¢; = 1.0,¢co = 0.7,¢c3 = 1.0 for third order. The fourth order
interpolant can be constructed in a similar manner, and the coefficients for fourth
order are ¢; = 1.0,¢, = 0.7,¢c3 = 0.7, ¢4 = 1.0.

Thus we can construct the fourth-order local Lax—Friedrichs flux by adding the

upwind portion as outlined above and the downwind portion analogously derived:

Fivy = (H (25)) + (H (2511))" (27)

Substituting this into (4) sets up the differential equations for the Runge-Kutta

scheme discussed in the previous section.
2.3. Equation of motion for propagating interface

A level-set function provides a simple way to track material interfaces and contact
surfaces that divide two different media (or materials). We will consider two main
types of multi-material interfaces, namely, material-material contact, and material—-
void (or vacuum) interface. We show how to treat jumps in state variables that are
discontinuous, like the density.

The level-set equation,

0 ¢ 0
8t +U181‘+U28y —0, (28)
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is used to track the location of the material interface represented by the zero-level
contour ¢(x,y) = 0. Initially, we take ¢ to be the signed normal distance function
to the interface. The material interface evolves with the local material velocity
v = (v1,v2). The material velocity on either side of the interface provides the
velocity extension that is used for advection of ¢ in the level-set domain. The level-
set function, ¢, is taken positive outside of material and negative inside, and ¢ is

initialized to be the signed normal distance from the material interface.
2.4. Material-material interface tracking

Across the contact surface of any two fluids or solids, pressure and velocity are smooth
while entropy (likewise density or internal energy) and other material properties
may change sharply. This is especially burdensome when numerically solving the
equations of motion at an internal boundary. In most finite-difference schemes, either
the computed density profile is widely dissipated or spurious oscillations that are
associated with the well known ‘over-heating’ effects are observed [12], [13].

In the case of any two materials (either fluid or solid) in contact, we use a
standard pressure update in each region based on the sign of the level-set function.
For example, suppose we consider two different ideal gases with distinct ¥’s in a
shock tube. The initial jump in pressure is responsible for the formation of shock and
expansion fan, separated by a material contact line. First, the Euler equations are
solved simultaneously with the level-set equation, ¢; + v ¢, = 0. The new location
of a zero level set is determined as ¢ is propagated with the particle velocity v as a
smooth function without discontinuity. The ideal EOS is used to update the pressures
on each side of gases with  taken as y(¢), with vy =y, if ¢ < 0, v =75 if ¢ > 0, and
v=(n+7)/2if ¢ =0.

In the case of a gas in contact with a metal, the material interface is tracked in
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Fluid or solid + Void or vacuum

pO, u0,p0| p1,ul,p0 p2,u2,p0 p3,u3,p0

8 29 9 <

Interface

Figure 1. Schematic of material-void interface.

the same way as explained in the ideal gas—gas case. Suppose that we replace one
ideal gas with a non-ideal (Mie-Gruneisen) EOS that defines the hydrodynamic EOS
for a metal. Then the equations are solved with p = pigeqs if @ < 0 and p = pyr_g

otherwise.
2.5. Material-void, stress-free interface tracking

Some examples of material-void contact include the interface between gas and a
vacuum, and solid and a void. For both of these cases, the stress-free condition must
be satisfied at the interface. Ideally, the zero density and zero stress characterize a
vacuum. However, the resulting large density ratio between vacuum and a material
puts a significant constraint on any solver, often leading to an early termination of
computation and/or unstable marching in both space and time.

We use a modified version of the ghost-fluid-method described in [14] for the
general two-material interface for the material-void contact. Experience tells us that
a typical density variation across this type of interface is on the order of 10%. Large
oscillations or a smeared out profiles of density are typically observed if a standard
pressure update (as shown in section 2.4) is used. One avoids inaccuracies associated
with ill-conditioned methods with a one-sided extrapolation of density (or entropy)

inside the solid into the vacuum region. Fig. 1 shows how a band of ghost nodes (e.g.
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i = 1---3) that are populated by the first-order extrapolation in one dimension. Using
the fact that both pressure and velocity across the material interface (or equivalently a
contact line in gas) are smooth and continuous while the density or the entropy usually
jumps, we extrapolate the discontinuous density field by assigning p;—¢ into p;—i..3.
The ghost zones, now have the pressure and velocity of voids while the density is
assigned as the extrapolated density value of the material in contact. Clearly, solving
the equation of motion in the new material-ghost zones is easier since the entire field
is smooth without any discontinuities. As the level-set function is solved, the interface
at ¢ = 0 position is advected with the particle velocity, and the location of material
contact line can be accurately tracked.

At first, this simple technique might seem troublesome because the resulting flow
field looks different from the actual physical situation where a solid is in contact with
a void. The ideal equation of state for gas or Mie—Gruneisen equation of state for
elasto—plastic metals when plotted on e—p axes, represents a hyperbola for a specified
pressure. These curves with constant pressures are essentially isobars representing
different states for gas or metal. So the idea of ‘modifying’ the density or the internal
energy of voids while the pressure remains constant suggests that we are shifting from
a point on this isobar to a different point with the density of actual material that
corresponds to its internal energy. This technique is an isobaric fix, and is the one
used to solve the ‘over-heating’ problems of piston-gas interface in Ref. [15].

In 2-D, the one-sided extrapolation involves solving the false-transient PDE

oI oI ol

where [ is p or e. The unit normal vector n is
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ne Y%
Vol

When 0I/01 = 0, (29) reduces to n - VI = 0, which implies that the gradient of I

(30)

normal to the interface is equal to zero. In practice, one does not solve to steady
state; instead, one takes a few steps in A7 until 7 > max(Az, Ay). A thin band
of populated ghost nodes (e.g. ¢ = 1---3) is created by this simple procedure. We
choose the + sign in (29) to populate the ghost nodes in the region where ¢ < 0 with
the values of I from the region where ¢ > 0. Similarly, we choose the - sign in the

PDE to populate the ghost nodes in the region where ¢ > 0.

3. Equations

3.1. Euler (inert) equations of compressible flow

The standard equations of motions for compressible flow are the Euler equations,

pv = —Vp, (31)

with p,v, E, and p representing the density, velocity vector, total energy per unit
mass (E = e+ 1/2v - v), and the hydrostatic pressure. The hydrodynamic EOS

allows us to write the pressure in terms of internal energy and density as p = p(e, p).
3.2. Reactive Euler equations

The standard combustion model, for a pre-mixed mixture that can burn, can be
derived from a simple mixture theory [16, 17]. The extent of chemical reaction, A,

represents a product mass fraction. One assumes that there are only two distinct
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species, Fuel and Product. The corresponding chemical reaction is written as
F — P + heat, where the heat of reaction is Q..

The balance laws of mass, momentum, and energy are unchanged from (31). In

addition, we invoke an evolution law for the reaction progress variable A,

A=, (32)

where we have assumed no species diffusion. The hydrodynamic EOS explicitly
incorporates exothermic energy release with 2 > 0 and ). > 0. The ABS model

uses the ideal EOS for high-explosive (HE),

p
p@ = - ch)\ ’ 33
(v—1) (33)
with the special rate-law
Q= H(p")A(1 - )" (34)

where the rate constant A is chosen to mimic a typical condensed high explosive with
v =3, Q. =4x10°m?/s? and A is given by 2.5147 x10°sec™!. The Heaviside
function, H(p*), with p* = 1 GPa is used to prevent any premature reaction ahead
of the shock. The steady one-dimensional reaction zone length for a CJ detonation

is equal to 4 mm.

3.2.1. Summary of equations for numerical stmulation We list a summary of the
model equations that are suitable for numerical integration of the two-dimensional,
conservative hyperbolic equations. The reactive Euler equations corresponding to (1)

have
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[ o] [ o] [ vy ]
o pvZ +p PU1V2
U=|pv |,F= PULV2 ,G = Pvg +p (35)
pE v1(pE + p) v2(pE + p)
| pA ] | oA | pra
with source
F o]
0
S=1 0 (36)
0
L AA2 |

The ideal EOS for reactive gas with A representative of the extent of chemical reaction

is given by

p= (1= {pE— 2 (3 +03) +pQeA} . (37)
3.3. Elasto-plasticity equations for ductile metals

Next, we state a version of the governing equations that can be used to model elasto—-
plastic solids under high impact loadings. Based on classical incremental small-strain
theory [18], we derive an additional scalar evolution law for the effective plastic strain.

The conservation equations follow the formulation of Euler equations of previous

section, namely

pv = —Vp+V . s, (38)
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where p, v, p, E are the same as those defined in (31), while the deviatoric stress s is
introduced. The Cauchy stress, defined in the spatial configuration, is ¢ = s — pI so
that the stress may consist of a volumetric term (namely a hydrostatic pressure p)
and a deviatoric (or traceless) part.

Similar to the equations for compressible gas, the governing laws of motion
for solid (here a metal) have additional unknowns which are not defined by
these equations. In standard hydrocode formulations, the pressure is defined by

hydrodynamic form EOS for metal, which is typically of the Mie-Gruneisen form

201, B 2

Pe [%C—O(sv(ovo —V)V)P *lonl {”e -5 (Voci(?()va Y)V)) } - 89)
This EOS is sometimes referred to as the ‘U,~U,’ equation of state. It uses the
Rankine-Hugoniot shock relations, and it is required to be consistent with the
experimentally measured Hugoniot curve of the form, U, = ¢y + s Uy, where U, is the
particle velocity and Uj is shock velocity. The constants ¢y and s are experimentally
determined by a straight line fit to the data. T’y is the Mie-Gruneisen coefficient
and V = 1/p. Additional evolution laws are needed to solve for the otherwise

undetermined components of deviatoric stress. We next give a brief review of a

typical formulation, based on a reasonably standard treatment of metal plasticity.

3.3.1. Derwwation of evolution laws of plasticity The overall goal is to express the
stress or rate of change of stress given the current stress, a measure of current
deformation, deformation rate, and a measure of the history of deformation. From
the classical small-strain theory of elasticity, the components of deviatoric stress s;;

are expressed in terms of elastic small strain, as

R .
Sij = 2N(€ij — gGkk 61]) = 2/,1,62] (40)
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where the primed (’) notation represents the deviatoric part. The total strain

increment de is taken to be the sum of elastic and plastic strain:

de = dé + de”. (41)

The corresponding deviatoric incremental strain can be expressed as

de' = dé' + de? (42)

where we use a plastic flow rule to replace de” with de? by using the fact ey = 0.
We will give a flow rule below. From (40), the incremental deviatoric stress can be

written as

ds = 2u(de — deP). (43)

A yield surface f(o,€) is defined by

f=a(o)-H(¢) =0, (44)

where ¢ and H represent the effective stress and hardening function, respectively.
Equation (44) describes a surface in stress space, where inside of the surface (i.e.
f < 0) is the elastic region. Yield and subsequent plastic flow take place on the

surface (f = 0). On the yield surface, f is constant so that

_of _p_a(i. 8H_p_
= %.da—f—ﬁde = aa_.da' 8€Pd€ = 0.

df

Upon rearranging, we have the condition for incipient plastic loading

9 o= O g (45)

do  oe
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In order to evaluate the derivative of effective stress with respect to the Cauchy
stress, the von Mises stress, ¢ = ,/%3 : 8, is used so that upon evaluating the

derivative, 05 /0e, (45) becomes

21_3 :do = H'de® (using H' = dH/de"). (46)
o

Using the fact that s: do = s : ds, we may write (46) as

i_s :ds = H'de". (47)
20

Using (43) to substitute for ds, we obtain

359 (del, — de?)) = H'de?. (48)
g

In order to derive an equation for the incremental effective plastic strain de?, we
introduce the plastic flow rule based on the plastic potential theory by von Mises.
Similar to the elastic potential theory, where the elastic strain is obtained by the
derivative of strain energy with respect to Cauchy stress o, the incremental plastic

strain is

D _ é_paQ(Uz'j)

€. =
Y 8O'Z'j ’

where von Mises proposed a plastic potential function Q(o;;) whose gradient is
proportional to the plastic strain by a factor of €. A common approach in plasticity
theory assumes that Q(oi;) = f(0i,€), a yield surface. Then, the plastic strain

increment is in the direction normal to the yield surface f (since %(a’) L f(o)).

Evaluating 0f/0o;; leads to

D

3
€.

T

é
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which is also an empirically determined plastic flow rule (Levy—Mises equation).
The Levy—Mises equation based on experiments or plastic potential flow theory

can be viewed as giving a ‘direction’ to a scalar, €, so that R, as defined by

R=:2,
20

may represent a direction tensor. Thus we can express the incremental plastic strain

defj in terms of the effective plastic strain deéP, a scalar, by giving a direction normal

to the yield surface f = 0:

G 3sy ,
- —=2u(de; — 5?]6157)) = H'dé". (49)

Finally, solving for dé?, we may write

1 s:dé
H :
L+5

In summary, we have derived evolution equations for €® and s by replacing the

de’ =

(50)

o

increments with material derivative, such that

s =2pél+QS—SQ

=2u(€ — €’) + Qs — s (Using € =D")

=2m17-§§#54-ns—sn (51)

g

. 1 : D'

EpziH,Sf, (52)
1+$ o

where €2;; are the components of spin tensor, defined by

1
Qij = 5(viy = vsa)-
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do = S(g) de
do= Ede
do = H’(€") de”

Figure 2. Stress—strain curve from a simple tension test.

The components of deviatoric stretch tensor, ng, are defined by

1
D;; = Dy — ngk 0ij »
where D;; = 1/2(v;j + v;;). The §;; terms in (51) arise because constitutive laws
based on Hooke’s law are formulated from objective stress rates as observed in the

material frame rotated back to the laboratory frame [19, 2].

3.4. Hardening laws

The simple tension test shown in Fig. 2 illustrates the distinction between the elastic
strain € and the effective plastic strain é’, and that summation of the two represents
the total natural strain e. Experiments provide a plastic response function S(e) whose
derivative represents a slope of the stress-strain curve do/de. As before, a constant

elastic slope is denoted E as in Fig. 2. The function H(€?) is called a hardening
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function which, in our case of copper, follows an isotropic hardening law. Let

H(&) = 0, + E,(&) & (53)

where o, is a constant yield stress, and H'(€P) represents the slope of the stress versus
effective plastic strain € curve. In the case of simple hardening, H'(e?) = E,(é?),
a plastic modulus. Noting that S’ and F are the slopes of o—e and o—€ curves,

respectively, we can express H' in terms of S’ and E:

iy 1 _ S'(eE
) = =3 T E-50 (54

For classical Taylor anvil impact test for copper, it is sufficient to assume linear
hardening. This simplifying assumption allows us to replace S’(e¢) with a constant
tangent modulus E; and H'(€”) with a constant plastic modulus E,. Table 5 lists the
elasto-—plastic response properties for a typical copper.

In some extreme ballistic penetration events, a linear hardening of the previous
section may not be suitable where the flow stress may exhibit a strong rate-sensitivity.

We consider a power law where

H@) =0, (1 + i) " (55)

€o
Here, € is an initial yield strain of a material, and n is the hardening exponent.
Johnson and Cook [20] suggest adding the effect of thermal softening to this
conventional power law as less plastic behavior is expected of a metal when its

temperature is close to the melting point. The hardening law that we use, in addition

to the linear relation in (53), takes the following form:

H@) =0, [1 - (%)a} (1 + Zz;) " (56)
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where T, and T, are a reference temperature and a melting temperature respectively,

and « is the softening exponent. The derivative of the hardening law can be found as

1/n—1 _ e
O, 142 e’ 1_ T-T, .
née, é& T, 1T,

3.5. Summary of equations of elasto—plasticity for numerical simulation

H'(@) =

(57)

Now, we can write a form of the elasto-plastic model, similar to hydrodynamic
simulation. Here, we treat the deviatoric part of stress as a source term. Based
on the hyperbolic equation with source in (38), the conservative variable and spatial

fluxes are defined by

p puy pUa
pU1 pvi +p pULVy
PV PV pvs +p
v=| " | = v1(pE + p) G- v2(pE + p) (58)
PSzx PU1Szx PU2S g
PSyy PU1Syy PU2Syy
PSzy PU1Szy PU28zy
peP pu1€° PUEP
with source
0 -
Osaa Osay
a?fy i a?ffy
2 (v1545 + vgswy) + 3‘9y (V15gy + V25yy)
S = P (2,u (D — %s‘z—xep) + Qo Sma — swQOw) ’ (59)
P (2:“ (D, - %sy_y p) + QymSmy — Smemy)
p (21 (D}, — 322€) + QumSmy — SomQmy)
p 1 (Swtzm+5nyyy+25wyDlzy)
L ’ |
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where we have used the definition of Cauchy stress o = s — pI with s;, = sy,
and the total energy pE = pe + £(v{ + v3). The Mie-Gruneisen EOS (39) is used

to represent the pressure behavior of high-strength ductile materials at an elevated

pressure ranging in GPa.

Based on the hyperbolic equation with sources (38) in cylindrical coordinates

(r, z), the conservative variable and spatial fluxes become

p PV, Iy
PV, pv2 +p PR,
PUz PUr Uy pvg +p
U—| PE | p_|vE+Dp) G v,(pE + p) (60)
PSrr PUrSry PUzSpr
PSzz PUrSzz PU2S22
PSrz PUrSry PUzSrz
pe? PP pU,E°
with source
_ e -
e O o 2
%(v'rsrr + Uzsrz) + %(vrsm + Uzszz) - I% + (SMW_:S”,UZ)
s— 0 (21 (Dl = 52) + Qe = 570) (o)
P (2/1 ( Izz - %%Ep) + QomSms — SzQOz)
p (20 (D — $:) + Uomm — 5yl
P H_lH_' (SMDLT—f—s,zz?Qz-f-%rzD'm))
L 3n A

4. Code validations

4.1. Time step decision

The time step of the multi-material code is calculated using the C'F'L condition:
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At = CFL x min 4 —27 Ay
max|df| max\d \

where C'F'L is the Courant number, max | df ‘ and max ‘ dg | are the largest eigenvalues

(62)

(in absolute sense) of the Jacobians of f and g. In order to evaluate the Jacobians,

we introduce new variables such as

_ ) - _ ) -
m pU1
n PU2
= = 63
Q PA
| Bi | poi |

where 4 = 1,..., and ¢; may represent three deviatoric stress components and the

effective plastic strain. The conservative fluxes in x,y directions can be expressed by

S SRR
m2 mn
b TP N

- p , - p 64

T=lmesn [ 97 | 56 +n) o
| p i B p i

Upon evaluating the derivative of f with respect to uw, we find the Jacobian of f as

[ 0 1 0 0 0 0 |
_m- ap 2 %) I¢) 0. 0,
o o o T om o = e 95
df -7 n m 0 0 0
T d (r+p) 0 d dp\ mop ap
du” | —B(r+p)+2(2) CRym () m(my m(q ) mp
e ; 0 o0
_Bim Bi 0 0 0o =
B 02 ) p
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The Jacobian of g is found as

0 0 1 0 0 0 |
o n " 0 0 0
_n- op F) 2 0, i) o [5)
d_g = ” y % d % (T+p_n i a_na a_f 2 %ﬂ 6% (66)
n n n /4 n n D ‘
du” | poren)+3 () sor SR () 50+R) 3R s
_an 0 & 0 - 0
p? L b
_bin 0 Bi 0 0o 2
L p2 P p .
The eigenvalues of the Jacobians (65) and (66) are
)\f:’l)l—c,’l)l,’l)l,’l)l,’l)l,’l)l'i‘c (67)
)\g =7V2 —C, U25U25U25U2,v2+c (68)

where ¢ is defined by

0 0
2 _ p+p_p

The partial derivatives of p can be evaluated for a given EOS. In the case of an

ideal EOS, p = (y — 1)(r — &= (m? + n?)), the partial derivatives are

2p
op 1, 5 5 op m  Op N\
8_,0_(7 1)2—p2(m + n%), o (v 1)p7 o (v 1),0,
op dp op

For an ideal EOS for high-explosive (HE), p = (y—1)(r + Q. — 2—1[)(m2 +n?)), where

Q. is a heat of combustion, the partial derivatives of pressure are

ap 1 2 2 ap m 5p n

3y (v 1)2p2(m +n), mo ==y )p, 5, = (7 )p,
9 d B
SZ=y=1, oh=(1=1)Q; 5o =0. (71)
or o« a5;

In the case of Mie-Gruneisen EOS, the pressure is given by
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Table 1. Initial parameters of shock tube Case A.

Gasl (50 cm) Gas2 (50 cm)

v 1.4 1.2
p (kg/m®) 1 0.125
p (Pa) 1.5 x 10° 1.0 x 10*
v (m/s) 0 0
av,-4 T 1 oVo=1) \’
o\’o 0 2,2y _P °ovte
_ 1o ), _ 2 _P . 72
P [%—8(%—%)]2+%p ' Qp(m ) Vo—s(Vo— 1) (72

The partial derivatives of pressure become

Op _ cop’Vo(s = pVo — psVo) + T (n*(C1)* + m?(C1)° + p(cgp*Vo(=1 + pVo) — 7(C1)°))

dp pVo(Ch)?
o __ L, o U o T % _ B
om Vo2 on Vo2 or Voo O0a O 0B

with C; = pV, — s + psV,,.
So, the optimal time step (62) can be computed by picking the larger of the
eigenvalues in Ay and A,. This procedure will assure that the domain of influence is

properly covered by the computational mesh in space—time.
4.2. Verification of order of convergence

As a first test, we consider two different Euler gases initially brought to contact. Upon
the removal of the diaphragm between the gases with different 7’s, an expansion wave
and a normal shock propagate in the opposite direction, and a contact surface (or
material interface) follows the right-running shock. Listed in Table 1 are the initial
conditions of this experiment.

Figure 3 shows the result calculated with 100 points spanning 1 meter in the x

direction. We used the fourth-order convex ENO scheme with a third-order Runge—
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Figure 3. Riemann problem involving two different gases used in the validation of
rate of numerical convergence.

Kutta scheme scheme described in section 2.1. The material interface or the contact
line between the gases are tracked via the level-set approach using the one-sided
extrapolation of density as discussed in section 2.5. We note that there is essentially
no smearing across the material interface.

We analyze the spatial accuracy by measuring the relative error E; in the L,
norm during the time integration to estimate the order of convergence similar to Ref.
[21]. The eight data points (e.g. density) between z = 0.52 to z = 0.59 in increments
of Ax = 0.01 are compared with the double grid data points at the same locations at

time ¢ = 0.0007. The discrete L; norm is defined as

Ei= 301 A (74

If a method is of r th order, then for a uniform mesh with N grid points, the error
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Table 2. Results of numerical test of convergence. In the table, N denotes grid
points, Fj is the Ly norm of error measured between the grids of size N and 2N
points, and r, is the rate of convergence.

N El Te

100 9.0 x 1075 —
200 1.68 x 102 2.4
400 2.7 x 1076 2.8
800 1.8 x 10~7 3.9

should satisfy

EY = 0(Ax™).

When the uniform mesh is refined by doubling the grid points, we should have

wo((3))

Then, one can solve for the rate of convergence, r., and finds

_ InEY —InEX
B In2

(75)

Te

The L, error and the rate of convergence based on density are displayed in Table
2 with the rate of convergence calculated from (75). The fourth-order convex ENO
scheme, combined with the level-set representation of the material interface, is tested
in this 1-D shock tube exercise. Clearly, as the grids are refined we observe that the
computed rate of convergence approaches the theoretical value of 4. Here, we make
sure that At is kept small compared with Az to make sure that no additional errors
are coming from the third-order temporal scheme, which will hinder the approach to

the theoretical convergence rate of 4.
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Table 3. Initial parameters of shock tube Case B.
Gasl (5 cm) Gasl (45 cm) Gas2 (50 cm)

v 1.4 1.4 1.67

p (kg/m®) 1.333 1.0 0.1379
p (Pa) 1.5 x 10° 1.0 x 10° 1.0 x 10°
v (m/s) 0.3535v/10% 0 0

4.8. Validation 1: 1-D shock reflection of two different gases

In the second shock-tube test, we start from a right-running shock that reflects off
a contact line at the center of a shock tube consisting of two gases of different ~.
A part of the incident shock running from left to right will be transmitted as there
is a right-moving interface separating two different shocks running in the opposite
direction. The initial conditions are summarized in Table 3.

Figure 4 shows the wave structures inside the tube after some period of time.
Upon the incidence of initial shock on the interface originally at = 0.5 m, a part
gets transmitted to the right-side gas, and part gets reflected while the interface
between the two follows the local particle velocity, moving to the right. The level-
set method with and without the one-sided extrapolation accurately captures the
location of shocks in opposite directions. Noticeably, the material interface between
the two gases is resolved without any smearing in the one-sided extrapolated method
while the transmitted and reflected shocks are a bit smeared out by the fourth-order

convex ENO scheme.
4.4. Validation 2: ZND structure

We test our multi-dimensional reactive Euler code by checking for the maintenance
of a stable 1-D, ZND detonation wave. We show the results of a test, where we

took discontinuous initial data with ambient (and motionless) conditions ahead (in
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Figure 4. Multi-material shock-tube test of shock reflection and transmission into
two adjacent gases.

Table 4. Initial end states of CJ detonation wave in a typical high-explosive.

Burnt (CJ) Fresh
p (Pa) 32 x 10° 10°
p (g/cc) 8/3 2
v (m/s) 2000 0
0% 3 3
A 1 0

the positive direction) and constant Chapman-Jouguet (CJ) states behind, for the
ABS test case with v = 3, Q. = 4 x 10°m?/s?, and A = 2.5147 x 10%sec™!. A steady
detonation profile quickly sets up, and the computed steady structure is shown in Fig.
5. The spatial structure perfectly overlays that obtained by integrating the steady
ODE:s for the ZND structure. The end states of the CJ detonation are listed in Table
4. The computed reaction zone thickness is 4 mm, and the steady CJ detonation

propagates at a speed 8.0 x 10? m/s.
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Figure 5. ZND detonation structure calculated by the multi-dimensional reactive
Euler solver. Az is 0.1 mm, and consequently 40 points are placed in the 4 mm
reaction zone.
Certainly, it would be beneficial to use extensive meshes in all regions of
the flow field without any adaptive meshing effort; however our multi-dimensional
computations are for only a limited number of points—about 10 points across the

reaction zone, which is deemed to be sufficient to accurately describe the qualitative

behavior of the material interactions.
4.5. Validation 3: Taylor anwvil test, copper rod impact

A cylindrical rod of initial radius of 3.2 mm and a length of 32.4 mm strikes a rigid
wall head-on at a velocity of 227 m/s. The rod is made of copper, and Table 5
summarizes the material properties of copper that are used in our simulation. By
comparison of our results with experimental and computational results obtained by
others (see [22], [23], [24]), this experiment provides a validation of our model and

numerics. For simplicity, we assumed a linear hardening law with a plastic modulus
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Table 5. Material properties typical of copper.

Material Property Value
density of copper 8.930 g/cc
shear modulus () 43.222 GPa
Poisson ratio (v) 0.35
Young’s modulus (E) 117 GPa
plastic modulus (Ep) 100 MPa
yield stress (o,) 400 MPa
Mie—Gruneisen coefficient, T, 2.0
Mie—Gruneisen coefficient, s 1.49
speed of sound, ¢, 3.94 km/s
€) ()
z(m) 2{my

c.02sk 0.025

0.02

0.015

0.01

0.005

1 r(m)

(m}
0.000 0005 0010 0 0.005 0.01

0.6 MM < meshsize< 1.2 mm Uniform mesh size = 0.2 mm

Figure 6. Grid comparison: (a) deformed grid at time ¢ = 80 usec used in the
Lagrangian FEM calculation by [7]; (b) uniform grid used in this work.

of E, = 100 MPa. We expect the final deformed shape, length, and radius to be
comparable to a benchmark result. Further, we expect the effective plastic strain
field to match reasonably closely. Our simulation was run out to 80 usec on our
eight-processor SGI Origin.

Figures 6 and 7 show on the right, the final deformed shape of our rod on our

fixed Cartesian grid used in our Eulerian calculation. The rod is initially traveling
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Figure 7. Comparison of effective plastic strain distribution at 80 usec. A 50 x
170 grid spans the r and z directions (Ar = Az = 2.0 x 10~*m).

with a velocity of 227 m/s directed downward and is initially undeformed. On the
left for comparison, the benchmark numerical result computed by Camacho and
Ortiz [7]|| is shown at ¢t = 80 usec. They use an adaptive finite element solver on
a Lagrangian mesh with a finite-strain plasticity model. Our simulation uses an
incremental strain formulation, so the results can be compared qualitatively but are
not necessarily expected to be exactly the same. However, our computed results
shown on the right-hand side are strikingly similar to their benchmark numerical
result, and our computed plastic strain field is almost quantitatively in agreement
with their result compared with the maximum value nearing 3. With our code, one
can produce animations (not shown) that show the rod decelerating on impact and a

shock propagating through the rod to the top with reverberations.

|| Reprinted from Computer Methods in Applied Mechanics and Engineering, Vol 142, Camacho
and Ortiz, “Adaptive Lagrangian modelling of ballistic penetration of metallic targets”, pp 269-301,
Copyright 1997, with permission from Elsevier Science.
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Figure 8. Schematic of the rate-stick experiment of Aslam and Bdzil, [8].

Table 6. Parameter of rate-stick experiment of Ref. [8].

HE HE (Booster) Inert
density (kg/m?) 2000 2000 1465
pressure (GPa) 1074 100 10~
ol 3 3 1.4

A 0 0 0

4.6. Validation 4: Rate-stick experiment

For our last validation exercise of our multi-material code, we consider a test problem
formulated by T. Aslam and J. Bdzil of Los Alamos National Laboratory [8]. A
‘stick’ of HE of length 36 cm and width 1.2 cm, is initially placed in an inert medium
surrounded by an inert layer on the bottom of thickness 2.4 cm and on either side by a
thin layer, 0.4 cm thick. Fig. 8 shows the initial setup of the experiment where density,
extent of reaction, and pressure fields are shown. A pocket of high-pressure HE of
dimension 2.4 by 2.4 cm initiates a steady detonation wave in the y direction and the
hot gas pushes the HE-Inert interface outward in the x direction. The parameters
for the problem are summarized in Table 6. For their simulation of this experiment,
Aslam and Bdzil used a modified form of Amrita that uses a high-resolution, patch-

based adaptive mesh refinement algorithm [25].
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Figure 9 shows comparison of two independently calculated results of rate-stick.
The left figures are from Aslam and Bdzil while the right is our result. Aslam’s results
were computed based on the adaptive grids, which give Az = Ay = 0.0074 cm or 54
points in the complete reaction zone of thickness 4 mm. The results are based on the
uniform mesh of size 0.027 cm, allowing 15 points across the reaction zone. In both
fields of A and p, we see an excellent agreement of the detonation front and the angle
of shock transmitted into the inert. We match Aslam and Bdzil’s steady detonation
speed of 6.9 mm/us.

Even with a coarse grid resolution (i.e. approximately 1/4th of that in Ref. [8]),
our multi-material numerics reproduce the fine-grid results of Aslam. With our new
code, we simulate multi-material problems with a higher degree of complexity, namely
interaction between HE and metals. We will demonstrate its use for applications and
in cases where analytical solutions (or experimental simulations) are difficult to obtain

for direct comparison.

5. Applications

5.1. HE-Cu-Void (a “challenging” rate-stick) problem

The interface treatment technique as discussed in section 2 is concerned with material—
void or material-vacuum contact. We extend this approach to incorporate a generic
material-material interface with a simple use of level sets. By tracking two different
interfaces, namely the contact interface between a high explosive—copper and copper—
void, we use our unified fluid—solid code for complex impact and penetration problems.

A plane steady Chapman-Jouguet (CJ) detonation wave is used as the
initial solution at the bottom of a rate-stick shown in the schematic, Fig. 10.
Experimental observations for rate-sticks confirm that the steady, curved detonation

wave propagates down the axis more slowly than a planar detonation (the diameter
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(@ A (dx=0.0074 cm) (b) A (dx=0.027 cm)

(C) p (dx=0.0074 cm) (d) p (dx=0.027 cm)

230

Figure 9. Comparison of the rate-stick simulations. Shown on the left is extent of
reaction and density from Ref. [8] with Az = Ay = 0.0074 cm or 54 points in the
reaction zone. The results on the right are computed with Az = Ay = 0.027 ¢cm or
15 points in the reaction zone.

effect). The axial wave speed varies with the diameter of the stick and also depends
on the type of confinement. With a finite thickness of the copper confinement, we can
determine the shock angle in the steady propagating wave system and the constant
speed.

Figures 11 and 12 show the transient behavior of an initially planar detonation
wave that develops into a steady curved detonation that maintains a shock in the
copper confinement. The time elapsed between the frames shown in the figure is

approximately 5 usec. The sequence shows that a curved detonation sets up in the
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Figure 10. Schematic of a “challenging” rate-stick experiment.

Table 7. Material properties of high-strength steel.

Material Property Value
density 7.85 g/cc
shear modulus (u) 77.5 GPa
Poisson ratio (v) 0.29
Young’s modulus (E) 200 GPa
yield stress (o,) 1500 MPa
softening exponent, « 1.17
hardening exponent, n 22

melting temperature, T, 1777 Kelvin
reference temperature, T, 300 Kelvin

metal-clad rate stick and propagates steadily.
5.2. Ezplosive welding

Figure 13 shows a sketch that represents the basic configuration for explosive welding.
Initially separated by a small gap, one of two metal plates is coated with a layer of
high explosive (HE). A detonator generates a shock wave, which starts a detonation
in the HE. The detonation shock drives copper plate into a steel plate (say). The
collision generates a shear velocity profile in the vicinity of the copper/steel interface
with velocities that are a sizable fraction of the particle velocity in the explosive

products, which is about 2000 m/s for a planar, ABS, CJ detonation.
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To simulate the HE-Copper—Steel contact problem in the welding setting, we
used a high pressure region in the ABS explosive to initiate the detonation. The
high pressure region was placed at the left end with dimensions of 0.2 cm by 1 cm.
In addition, to mimic early skew contact, we took the particle velocity in the high
pressure block to be 2000 m/s along the plate and (0.087)(2000) m/sec normal to the
horizontal plates. In this way, the interface between the HE and the copper plate
initially experiences both the shearing and normal velocities just as in the actual
experiment shown in Fig. 13.

Numerical results are shown in Figs. 14 and 15. The overlaid lines of the level-
set functions on the pressure and the density figures represent the material interfaces
between the metals and HE. The interfaces that were initially located at 1 cm and 1.5
cm, move downward due to the action of the initiation and the subsequent propagation
of the detonation. Tremendous ringing is observed in the copper plate when the strong
shock wave first penetrates and becomes weaker as it is transmitted through the less-
dense steel. Since the plastic yielding occurs at a much lower stress state in copper,
the hardening behavior (seen as perturbations or ‘ringing’) is very pronounced in the
copper layer. Although the unstable shearing motions are not obvious in the copper—
steel interface, this slip line at the interface has the potential to generate a Kelvin—
Helmholtz instability, resulting in rolling up of the contact lines. In [6], we considered
the shear-induced melting of two plates in contact. The liquid interface between the
plates became unstable as the plates experienced a shear motion. By allowing the
copper and steel of the welding simulation to undergo phase transformations, we
believe that, with a modification of the constitutive model, we can melt the interface
and see coherent wavy structures as the unstable interface starts to roll up. However,

that simulation is beyond our present scope.
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Figure 13. Schematic of explosive welding of two metal plates.

5.3. Impact of copper plate target with a spherical detonation

First, the initial shape and location of two material interfaces are prescribed by a

single distance function for each interface:
pr=1lcm—2z, ¢y=(1cm+ width) —z,

where the distance from the left inlet to a first interface is assigned a distance 1 cm,
and the width is set 0.5 cm of the initial copper plate thickness. As the hot spot
initiates a spherical detonation wave in a radial direction, chemical reaction instantly
consumes the fuel and a thin reaction front is coupled to a shock approaching the
first interface between the HE—Copper. As the shock penetrates the copper, we see an
incipient plastic deformation in the metal as shown in Fig. 17. The highest effective
plastic strains are observed where extreme bending occurs right at the center and the
upper and lower ends. Energy deposited by the detonation is trapped between these
two interfaces and results in rich wave interactions in the metal layer.

Figure 18 shows the pressure contours of spherical detonation wave penetrating

the first copper interface and pushing out the second interface. The first snapshot
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Figure 14. Explosive welding of copper (8.93 g/cc) and high-strength steel (7.85
g/cc). The extent of reaction and the pressure (Pa) are shown. Simulations are
carried out on a 150 by 100 grid.

taken at ¢t = 0.34 usec shows a complex wave structure at the interface, where
reflections of the incident waves are observed. As the incident spherical wave reaches
a second interface, a translational motion of the free boundary is seen at ¢ = 2.77 usec,
where part of the incident shock is reflected back toward the first interface. The shock
reflections off the upper and lower walls of the domain cause the ends of the plate to
bend as shown in the last figure (¢ = 5.23 usec). This suggests a pinch-off mechanism

by which a metal of finite thickness may rupture upon collision with a penetrating
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Figure 15. Explosive welding of copper and high-strength steel. Effective plastic
strain and the density.

detonation wave. Figure 19 describes how the initially unreacted HE is burnt as the

hot product gas pushes the copper plate in the direction outward.

6. Summary and discussion

We have developed a comprehensive numerical framework to compute multi-material
interactions for the energetic materials and such other inerts as metal and an elastic

solid. 'The numerical methods used in the spatial discretization are higher-order
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Figure 16. Plate cut experiment. Schematic of copper plate impact by an
expanding cylindrical detonation.

ENO schemes with level sets to treat the sharp material interfaces. The level sets
track the motions of the material-material or material-void (or vacuum) interfaces
so as to minimize any spurious oscillations associated with the smearing of entropy
profiles across a sharp material interface. The high-resolution simulation tool for the
multi-material impact has been carefully validated through a series of one-dimensional
and multi-dimensional tests and has produced both qualitative and quantitative

comparisons with benchmark results.
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copper—void interface boundary is enforced. Dynamic deformation and translation of the plate is illustrated by snapshots at
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Figure 20. Profile of u on a stencil (2;_3,2;j_2,%j—1,2j,%j+1,Tj+2) at t = 0.
Appendix

We consider a simple 1-D Burger’s equation to illustrate the high-order convex-ENO

construction.

ou_ of _

ot " or
where f = u?/2, and the solution at time ¢ = 0 is depicted in Fig. 20.

0 (76)

We consider the upwinding procedure using the stencil (z;_1, ;) and denote fth i

2

as the upwind flux. The construction of downwind flux, f]jr L starts with (z;,2,41),
instead. We first identify that the first and second-order fluxes are the local Lax-

Friedrichs fluxes evaluated at ;. From (5), the first-order ENO flux is
1
1
P () = 5 (ug) + g y). (77)
For the second-order upwind flux, we decompose (8) into upwind (+) and downwind

(—) components, such that

1

FO () = S0 0) + g y) + (6B F () + 0y, 8)). (78)

Up to a second order, general ENO fluxes are identical to convex ENO fluxes that
will be described next. For third order, we define a function called primitive function,

H(z), such that

fz) = : (79)
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We select three cubic interpolants of H at stencils (zj_3,%j_2,%;_1,%;),
(j—2, Tj—1,%j, Tj+1), and (xj_1,T;,Tj11,T;42), differentiate each of the interpolants,
then evaluate the results at z;, and take the convex combination of these numbers

which is “closest” to (H®*(z;)) = fﬁ)f (u;) in (78). The details of the convex ENO

construction follow next.

The derivatives of three candidate interpolants are

(HO (@) = (Floj-as 1)+ g yula—a. 1) + (a1, 2+ oy yulay, 2) (520)
+(flay. 3+ gy ule, (A1 (A)?), (80)

(S (@) = (Flejor, 1)+ oy yulzyor, 1) + (Flay, 2 + 0y, yulzy, 2) (302)

+(flzye1, 3] + oy yuli, 3) (2(A2)?), (81)
(7 2)) = (Flog, 11+ gyl 1) + (L0, 2] + gyl 2) (Aa)
+(flrjs2,3] + g gulez, 3)) (—(Ac)?), (52)

where one of these three candidates (v,) becomes the upwind flux at z; (i.e.
f;i); = (H,Ei’)+(xj)>l). Evaluating the convex-weighted differences as in (24), we
can decide on the interpolant whose absolute value of the difference is the minimum.

Table 8 summarizes the calculated upwind fluxes at z; based on the convex ENO
construction for the given example problem.

Since the first and second-order fluxes are the general ENO fluxes using minmod
limiter, we will just use f](}r);(uj) and f;i);(uj) to build the third-order convex ENO
flux, f](i); (u;). To do this, we first evaluate the divided differences of v and f following

the definitions in (13), such that

1 1
ulzj_9, 1] =0, wulz;_1,1] = s ulzj, 1] = ~Ag’ ulzji1,1] =0, ul[zj4e,1] =0,
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Table 8. Summary of convex-ENO fluxes evaluated at z;.

rou f=uwd2 ey ) Y @) @) 1w
zji_g 1 1 1 1
Tj_2 1 % 1 1
.’L'j_l 1 % 1 0
5 00 0 1 0 0 —a
.’L’j+1 0 0 0 1
ZTj42 O 0 0 1
1 1 1
ulzj1,2] = 2(Azr)?’ ulz;, 2] = T (Az)? ulzji,2] = 2(Az)?’ ulzj42,2] =0,
(23] = g e 8= o ulegn 3 =
ux]’ 2(A$)3’ ux]+1’ - 2(A$)3’ 'U/./,EJ+2, 6(Al‘)3
and
1
f['rj—% 1] = Oa f[xj—la 1] = 01 f[xja 1] = _ma f[‘rj-Ha 1] = Oa f[xj-I—?a 1] = Oa
1 1
f[xj—la 2] = Oa f[wja 2] = _4(A.’L')2’ f[xj-Fl’ 2] = 4(A.’L’)2’ f[xj-FZa 2] = 05

1 1 1
f[-Tj,?’] — —m, f[.%‘j+1,3] = m; f[$j+2;3] = _12(A.I)3'

Evaluating the three candidate fluxes in (80) through (82), we find

(H?H(xj))l - _121;@’ <H§3)+(“"j))l - _125Ax’ (H?Em(xj))l - _6%@'

Now, we apply the convex ENO decision by evaluating the differences,

11 ) 1

dy = d3 = —c3 6Az

- ——, dy=—cp——,

"12Az7 7 > 12Az
with positive definite coefficients, ¢, co, and c3, defined previously. Since all three
differences are of the same sign, we identify ds as having the absolute minimum

value, and find

3 3 !
1250 = (9 0)) = 51
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The third-order local Lax-Friedrichs flux is thus constructed by adding up the

upwind (+) portion as shown above and the downwind portion analogously evaluated

at (zj, Tj41):

i+l = f@; (ug) + f;i); (1) = (HO* (@) + (HO (2;01)) . (83)



